
11-Jun-25—5:19 PM

1University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

1
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Menu
• VHDL
• VHDL: The Entity
• VHL: IEEE 1076 TYPE
• VHDL: IEEE 1164 TYPE
• VHDL: The Architecture
• Mixed-Logic in VHDL
• VHDL MUX examples

Look into my ...

See examples on
web-site: (VHDL

Examples) NAnd2a.vhd,
NAnd2b.vhd,
Mux2to1*.vhd,
* = a-f, Mux41*

See also example file on web:
Creating graphical

components
(Component_Creation.pdf)

EEL3701

2
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Introduction to VHDL
• Q: What is VHDL?
• A: VHSIC Hardware Description Language
• Q: What is VHSIC?
• A: Very High Speed Integrated Circuits
• Q: What is VHDL used for?
• A: To describe and test a digital circuit in a high level

language environment. When used in conjunction
with a router and logic generator a silicon mask can
be created.

• A competitor to VHDL is Verilog.
>VHDL is older and more widely used until recently, but ...

1

2

11-Jun-25—5:19 PM

2University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

3
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL Syntax
• VHDL is case insensitive

>GOOD = Good = good = gOOD

• Everyone has their own conventions; mine follows:
> Keyword of VHDL are all lower case
> Entity and architecture names are all upper case
> Identifiers start with a capital
> All new words in a given identifier is again capitalized

• White space (spaces or tabs) is fine anywhere as separators
• The semicolon is a statement terminator
• Two dashes (“--”) indicate a comment follows
• Identifiers must begin with a letter; subsequent characters

are alphanumeric or “_”
• No precedence in VHDL; resolves left-to-right; use paren.

(except not has precedence over logical operators)

EEL3701

4
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: The Entity

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

• Example:

Black Box

� The entity is the description of inputs and outputs
to a black box

entity BLACK_BOX is port(
Clock, Reset: in bit;
D: in bit_vector(7 downto 0);
Q: out bit_vector(7 downto 0);
CO: out bit);

end BLACK_BOX;

3

4

11-Jun-25—5:19 PM

3University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

5
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: The Entity
Entity syntax:

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

entity ENTITY_NAME is port(
-- optional parameterized components
Name1: mode type;
Name2: mode type;
…
NameN: mode type);

end ENTITY_NAME;

• Names can be a list of names separated by commas
(as in the NAND2a above right)

• Modes describe data direction flow
• Types indicate the set of values the port name can be

assigned

EEL3701

6
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

• Ports are often associated with pins
• Ports are a special class of something called a

signal
>Ports have a signal name, mode and type

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

VHDL: The Entity:
PORT MODE

entity NAND2a is
port(A,B: in bit; C: out bit);

end NAND2a;

5

6

11-Jun-25—5:19 PM

4University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

7
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: The Entity:
PORT MODE

• in Data goes into the entity (and not out)
• out Data goes out of the entity (but not in

and is not used internally)
• inout Data is bi-directional
• buffer Data goes out of the entity and is also

fed back within the entity

Mode possibilities: in, out, inout, buffer

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

EEL3701

8
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: bit and
bit_vector

• VHDL is strongly typed, i.e., you cannot assign a
signal of one type to the signal of another type

• bit - a signal that can have the value 0 or 1
(low and high, respectively)

• bit_vector - a set of bits

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

signal X: bit_vector(0 to 3); --ascending range
signal Y: bit_vector(3 downto 0); --descending range

X <= "0111"; --double quotes used for vectors
Y <= "1010"; --double dash used for comments

The assigned values are (single quotes used for scalars):
X(0)<='0'; X(1)<='1'; X(2)<='1'; X(3)<='1';
Y(3)<='1'; Y(2)<='0'; Y(1)<='1'; Y(0)<='0';

Examples:
Don’t use to (use downto)

7

8

11-Jun-25—5:19 PM

5University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

9
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: Assignment Operator
& Quotes

• The <= is the assignment operator, but also a “less than or
equal to symbol

> The context determines which interpretation is necessary
• Signals are wires (nodes) in a design
• Bits in single quotes, e.g., X(0)<='1'
• Strings in double quotes, e.g., Y<="1010"
• Bit and bit_vector rarely used now

signal X: bit_vector(0 to 3); --ascending range
signal Y: bit_vector(3 downto 0); --descending range

X <= "0111"; --double quotes used for vectors
Y <= "1010"; --double dash used for comments

The assigned values are (single quotes used for scalars):
X(0)<='0'; X(1)<='1'; X(2)<='1'; X(3)<='1';
Y(3)<='1'; Y(2)<='0'; Y(1)<='1'; Y(0)<='0';

Don’t use to (use downto)

EEL3701

10
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: Some IEEE 1076 Types
• Integer

>Used for indexing, constants, etc.
• Boolean

>Take on values of 0 and 1 (low and high)
>No mixed-logic in VHDL or in the IEEE 1076 standard

• Enumerated
>User defined set of possible values
>Ex:

type Move is (Start, Slow, Fast, Stop);

9

10

11-Jun-25—5:19 PM

6University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

11
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: IEEE 1164 TYPE

• IEEE 1164 standard is a multi-valued logic system
• Nine values (not binary)
• Makes writing VHDL code significantly simpler
• Two types -- std_logic and std_logic_vector --

replace the old types bit and bit_vector,
respectively

• std_logic and std_logic_vector are the industry
standards for digital design

EEL3701

12
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: IEEE 1164 TYPE
• IEEE 1164 defines the following type:
type std_ulogic is('U', -- Uninitialized

'X', -- Forcing unknown
'0', -- Forcing 0
'1', -- Forcing 1
'Z', -- High impedance
'W', -- Weak unknown
'L', -- Weak 0
'H', -- Weak 1
'-', -- Don’t care
);

Only these allowed
in VHDL simulator

same types as std_logic

11

12

11-Jun-25—5:19 PM

7University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

13
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

VHDL: IEEE 1164 TYPE
• ‘L’ (weak ‘0’) means floats ‘L’; but an input can easily

drive it to high; think “pull-down”
• ‘H’ (weak ‘1’) means floats ‘H’; but an input can easily

drive it to low; think “pull-up”
• The type std_logic is a “resolved version” of std_ulogic,

i.e., a decision is made when a signal is driven from
multiple sources

• Do not use std_ulogic and std_ulogic_vector
• std_logic_vector is a grouping of std_logic (just as

bit_vector is a grouping of bit)
• Must use std_logic and std_logic_vector if need more than

the two values (0 and 1 = low and high, respectively)
available with bit and bit_vector

EEL3701

14
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

MEMORY_DEV Entity
Example

• Synchronous circuit, i.e., Clk input
• AD (AD0-AD7), tri-state bi-directional
• D (D8-D15), output only
• AS, output also used internally
• OE, input only
library ieee;
use ieee.std_logic_1164.all
entity MEMORY_DEV is port(
Clk,OE: in std_logic;
AD: inout std_logic_vector(7 downto 0);
D: out std_logic_vector(15 downto 8);
AS: buffer std_logic);

end MEMORY_DEV;

Clk

OE

AD7:0

D15:8

AS

13

14

11-Jun-25—5:19 PM

8University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

15
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Architecture
• Architecture describes the function of a particular

entity (or entities)
• Two types of architecture: Structural & Behavioral

>Structural architecture: Connections of previously
defined components

>Behavioral architecture: High level “programming-
type” description

– Assignments: := (for variables), <= (for signals and states)
– Logic Operators: and,or,not,nand,nor,xor,xnor
– Comparisons: =, /= , >, <, <=, >=
– Constructs: if-then-else, for, when-else,
case, with-select

EEL3701

16
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Architecture Syntax
architecture architecture_name of MODEL_NAME is
-- optional signals defined here
begin

...
VHDL concurrent statements
...

end architecture_name;

architecture behavior of NAND2a is
signal COut: bit;

begin
COut <= A and B;
C <= not COut;

end behavior;

Example:

Your choice
of name

entity NAND2a is
port(

A,B: in bit;
C: out bit);

end NAND2a;

15

16

11-Jun-25—5:19 PM

9University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

17
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Architecture Syntax
• Prior to the first architecture line, you may

have library and use statements
library ieee;
use ieee.std_logic_1164.all;
entity NAND2b is
port(

A,B: in std_logic;
C: out std_logic);

end NAND2b;
architecture behavior of NAND2b is
signal COut: std_logic;
begin
COut <= A and B;
C <= not COut;

end behavior;

Notice no semicolon
following the is (for either
entity or architectures)

Signals (if needed) are
defined immediately
following the architecture
statement.

EEL3701

18
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

A Mixed-Logic Activation-
Level Convention

• VHDL does not have any built in mixed-logic or
activation-level constructs

• My convention follows:
> Active-low signals are those with a _L ending, e.g., and

active-low signal X is represented as X_L
> Active-high signals are those without a _L ending
> The logic equations include only the original signal

names with no _L endings
• Each active-low signal requires an additional signal

definition

17

18

11-Jun-25—5:19 PM

10University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

19
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Mixed-Logic
Example in VHDL

• My convention follows:
>Active-low signals are

those with a _L ending,
e.g., and active-low signal
X is represented as X_L

>Active-high signals are
those without a _L ending

>The logic equations include
only the original signal
names with no _L endings

• Notice that the logic
equations do not have
activation-levels mixed in

library ieee; use ieee.std_logic_1164.all;
entity MIX_LOG is port(

A,B,C_L,D_L: in std_logic;
X_L,Y: out std_logic);

end MIX_LOG;
architecture behavior of MIX_LOG is
signal X, C, D: std_logic;
begin

-- Define inputs
C <= not C_L; D <= not D_L;

-- Define outputs
X_L <= not X;

-- Define logic equations
-- (No _L in below equations)

X <= A and B;
Y <= C or D;

end behavior; Mixed_Logic.vhd

EEL3701

20
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Example VHDL for an
Octal 2-input MUX

library ieee; use ieee.std_logic_1164.all;
entity MUX2to1_a is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_a;

architecture behavior of MUX2to1_a is
begin
Y(0) <= (B(0) and Sel) or

(A(0) and not(Sel));
Y(1) <= (B(1) and Sel) or

(A(1) and not(Sel));
...
Y(7) <= (B(7) and Sel) or

(A(7) and not(Sel));
end behavior;

A(X0)

B(X1)
Y

Sel

8

8
8

Logical
Operators

Mux2to1a.vhd

19

20

11-Jun-25—5:19 PM

11University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

21
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;use ieee.std_logic_1164.all;
entity MUX2to1_b is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_b;

architecture behavior of MUX2to1_b is
signal Temp: std_logic_vector(7 downto 0);
begin
Temp <= (Sel,Sel,others=>Sel);
-- or could use Temp <= (others=>Sel);
Y <= (B and Temp) or

(A and (not Temp)); -- must have same types for and & or
end behavior;

Example VHDL for an
Octal 2-input MUX

Logical Operators and vectors (also use
of “others”)

Mux2to1b.vhd

A(X0)

B(X1)
Y

Sel

8

8
8

EEL3701

22
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;
use ieee.std_logic_1164.all;
entity MUX2to1_c is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_c;

architecture behavior of MUX2to1_c is
begin
Y <= B when (Sel='1') else A; --'Y<=' not repeated

end behavior;

Example VHDL for an
Octal 2-input MUX

when

Mux2to1c.vhd

A(X0)

B(X1)
Y

Sel

8

8
8

21

22

11-Jun-25—5:19 PM

12University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

23
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;
use ieee.std_logic_1164.all;
entity MUX2to1_d is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_d;

architecture behavior of MUX2to1_d is
begin
with Sel select
Y <= B when '1',

A when '0', -- can remove either this line
A when others; -- or this line (but ; at end)

end behavior;

Example VHDL for an
Octal 2-input MUX

with-select

Mux2to1d.vhd

A(X0)

B(X1)
Y

Sel

8

8
8

EEL3701

24
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;use ieee.std_logic_1164.all;
entity MUX2to1_e is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_e;
architecture behavior of MUX2to1_e is
begin
COMB: process (Sel, A, B) --rerun process if any changes
begin

Y <= A;
if (Sel = '1') then

Y <= B;
end if; -- note that “end if” is two words

end process COMB;
end behavior;

Example VHDL for an
Octal 2-input MUX

if-then

We’ll see more about
processes later

Mux2to1e.vhd

A(X0)

B(X1)
Y

Sel

8

8
8

23

24

11-Jun-25—5:19 PM

13University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

25
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;use ieee.std_logic_1164.all;
entity MUX2to1_e is port(
A, B: in std_logic_vector(7 downto 0);
Sel: in std_logic;
Y: out std_logic_vector(7 downto 0));

end MUX2to1_e;
architecture behavior of MUX2to1_e is
begin
COMB: process (Sel, A, B) --rerun process if any changes
begin

if (Sel = '1') then
Y <= B;

else
Y <= A;

end if; -- note that “end if” is two words
end process COMB;

end behavior;

Example VHDL for an
Octal 2-input MUX

if-then-else

Mux2to1f.vhd

A(X0)

B(X1)
Y

Sel

8

8
8

EEL3701

26
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

library ieee;
use ieee.std_logic_1164.all;
entity DEC2to4 is port(

What would you put here?
> std_logic (bit) or std_logic_vector (bit_vector)

);
end DEC2to4;
architecture behavior of DEC2to4 is
begin

What would you put here?
end behavior;

D0

D1

Example VHDL for
a 2-to-4 Decoder

X0

X1

X2

X3

2-to-4 Decoder

25

26

11-Jun-25—5:19 PM

14University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

27
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

4-Input MUX
library ieee;
use ieee.std_logic_1164.all;
entity MUX41a is port (

S1, S0: in bit;
D3, D2, D1, D0: in bit;
Y: out bit

);
end MUX41a;
architecture logic OF MUX41a IS
begin
-- Y = (D0 * /S1 * /S0) + (D1 * /S1 * S0) + (D2 * S1 * /S0) + (D3 * S1 * S0)
-- Y = (D0 * /S1 * /S0) + (D1 * /S1 * S0) +
-- (D2 * S1 * /S0) + (D3 * S1 * S0)
Y <= (D0 and (not S1) and (not S0)) or

(D1 and (not S1) and (S0)) or
(D2 and S1 and (not S0)) or
(D3 and S1 and (S0)) ;

end logic;

mux41.vhd

mux41a.vhd

D0
D1

Y
S1 S0

D2
D3

mux41b.vhd

EEL3701

28
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

Making New Components
with Quartus

• Compile a VHDL file (.vhd) or a Graphic Design
File (.bdf)

• In the same directory, open or create a new BDF
file.

• Double-click and the select Enter Symbol
• You will find your new part named in the list of

libraries
• Just select it and the process is complete!

Component_Creation.pdf

27

28

11-Jun-25—5:19 PM

15University of Florida, EEL 3701 – File 19
© Dr. Eric M. Schwartz

Intro to VHDL

EEL3701

29
University of Florida, EEL 3701 – File 19

© Dr. Eric M. Schwartz

The End!

29

